Flight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover

نویسندگان

  • Weihua Su
  • Carlos E. S. Cesnik
چکیده

This paper discusses a methodology of analyzing the flight dynamic stability of a flapping wing Micro Air Vehicle (MAV) in hover. The flexible flapping wings are modeled by a strain-based geometrically nonlinear beam formulation, coupled with an empirical aerodynamic formulation for load calculation on the wings surfaces. Wing flapping kinematics is described using a set of Euler angles. Nonlinear equations of motion for the body frame attached to the vehicle are used to complete the coupled aeroelastic and flight dynamic formulation. All these formulations are implemented in an integrated numerical framework. To evaluate the flight dynamic stability of the hovering flapping wing MAV, the coupled nonlinear governing equations are linearized, and the transition matrix over a wing flapping cycle is determined. By taking advantage of the periodic hovering condition, the stability analysis is performed based on the transition matrix in the Floquet theory. Longitudinal and lateral stabilities of a flapping wing MAV in hover is explored with the impact of different wing rigidity and inertia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and resilient micro air vehicle flapping wing gait evolution for hover and trajectory control

This paper deploys a recently proposed, biologically inspired, on-line, search-based optimization technique called Selective Evolutionary Generation Systems (SEGS) for control purposes; here, to evolve Micro Air Vehicle (MAV) flapping wing gaits in changing flight conditions to maintain hovering flight and track trajectories in unsteady airflow. The SEGS technique has several advantages, includ...

متن کامل

A Passively Stable Hovering Flapping Micro-Air Vehicle

Many insects and some birds can hover in place using flapping wing motion. Although this ability is key to making small scale aircraft, hovering flapping behavior has been difficult to reproduce artificially due to the challenging stability, power, and aeroelastic phenomena involved. A number of ornithopters have been demonstrated, some even as toys, nearly all of these designs, however, cannot...

متن کامل

Recent Progress Towards Developing an Insect-Inspired Flapping-Wing Micro Air Vehicle

This paper presents an overview of the on-going research activities at Shrivenham, aimed at the design of an autonomous flapping-wing micro air vehicle. After introducing the problem of insect wing kinematics and aerodynamics, we describe our quasi-three-dimensional aerodynamic model for flapping wings. This is followed by a brief discussion of some aerodynamic issues relating to the lift-gener...

متن کامل

Passively Stable , Untethered Flapping - Hovering Micro - Air Vehicle

I nsects and hummingbirds remain unmatched in their aerodynamic ability to hover in place in addition to other acrobatic feats such as flying backward and sideways by exploiting flapping-wing motion [1]. Although this remarkable ability is key to making small-scale aircraft, flapping-hovering behavior has been difficult to reproduce artificially because of the challenging stability, power, and ...

متن کامل

The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight

Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit flies. Here we present our experience with designing and building micro flapping air vehicles that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011